Bilde av Johansen, Dag
Bilde av Johansen, Dag
Department of Computer Science dag.johansen@uit.no +4777644047 94525062 Tromsø You can find me here

Dag Johansen



  • Bjørn Aslak, Aril Bernhard, Tor-Arne Schmidt, Dag :
    Chapter 7: Digital Evidence in Times of Manipulation and Deepfakes – A Compliant and Integrity-Preserving File System
    2025
  • Mohsin, Elisavet, Dag, Håvard :
    Survey of Lightweight Hardware-Based Hash Functions for Security in Constrained IoT Devices
    IEEE Access 17. septiembre 2025 DOI
  • Ivan Andre Matias Do Vale, Andreas, Andreas, Dag, Svein Arne :
    Effect of match load on perceived wellness in highly trained female football players
    PLOS ONE 2025 DOI
  • Pegah, Sajad Amouei, Vajira L B, Sushant, Saeed Shafiee, Dag et al.:
    Comparative Analysis of Audio Feature Extraction for Real-Time Talking Portrait Synthesis
    Big Data and Cognitive Computing 2025 DOI
  • Birk Sebastian Frostelid, Michael Alexander, Pål, Dag :
    Runtime Verification for Visual Deep Learning Systems With Loss Prediction
    IEEE Access 2025 DOI
  • Andreas Kjæreng, Ivan Andre Matias Do Vale, Sigurd, João, Morten B., Dag et al.:
    An analysis of training load in highly trained female football players
    PLOS ONE 2024 DOI / ARKIV
  • Enrico, Håvard Johansen, Dag, Øyvind Arne Moen :
    Mining Profitability in Bitcoin: Calculations of User-Miner Equilibria and Cost of Mining
    Lecture Notes in Computer Science (LNCS) 2024 DOI / ARKIV
  • Cise, Andreas Kjæreng, Matthias, Susann Dahl, Sigurd, Nourhan et al.:
    A large-scale multivariate soccer athlete health, performance, and position monitoring dataset
    Scientific Data 2024 DOI / ARKIV
  • Pegah, Syed Zohaib, Gunn Astrid, Martine, Miriam S., Dag et al.:
    A Theoretical and Empirical Analysis of 2D and 3D Virtual Environments in Training for Child Interview Skills
    IEEE Access 2024 DOI / ARKIV
  • Ivan Andre Matias Do Vale, Andreas Kjæreng, Dag, Svein Arne :
    Analysis of peak locomotor demands in women’s football–the influence of different epoch lengths
    PLOS ONE 2024 DOI / ARKIV
  • Pegah, Syed Zohaib, Gunn Astrid, Martine, Cayetana López, Miriam S. et al.:
    Immersive Virtual Reality in Child Skills Interview Training: A Comparison of 2D And 3D environment
    2024 DOI
  • Birk Sebastian Frostelid, Michael, Pål, Dag :
    A Robust Framework for Distributional Shift Detection Under Sample-Bias
    IEEE Access 2024 DOI / ARKIV
  • Areeg Samir Ahmed, Håvard, Dag :
    QMConn: A Self-Healing Controller for Microservices Using Q-Learning and Markov Decision Processes
    2024 DOI
  • Bjørn Aslak, Jon Petter, Dag :
    Developing with Compliance in Mind: Addressing Data Protection Law, Cybersecurity Regulation, and AI Regulation During Software Development
    IFIP Advances in Information and Communication Technology 2024 DOI / ARKIV
  • Sayed Mohammad Majidi, Mehdi Houshmand, Cise, Saeed, Tomas, Dag et al.:
    SmartCrop-H: AI-Based Cropping of Ice Hockey Videos
    2024 DOI / ARKIV
  • Mehdi Houshmand, Sayed Mohammad Majidi, Cise, Saeed, Tomas, Dag et al.:
    AI-Based Cropping of Soccer Videos for Different Social Media Representations
    2024 DOI / ARKIV
  • Mohsin, Håvard Johansen, Dag :
    Performance Evaluation of Lightweight Stream Ciphers for Real-Time Video Feed Encryption on ARM Processor
    Future Internet 2024 DOI / ARKIV
  • Sayed Mohammad Majidi, Mehdi Houshmand, Cise, Saeed Shafiee, Tomas, Michael Alexander et al.:
    AI-Based Cropping of Sport Videos Using SmartCrop
    International Journal of Semantic Computing (IJSC) 2024 DOI / ARKIV
  • Mehdi Houshmand, Sayed Mohammad Majidi, Cise, Saeed Shafiee, Tomas, Dag et al.:
    AI-Based Cropping of Ice Hockey Videos for Different Social Media Representations
    IEEE Access 2024 DOI / ARKIV
  • Aril Bernhard, Tor-Arne Schmidt, Michael Alexander, Pål, Dag :
    Sustainable Commercial Fishery Control Using Multimedia Forensics Data from Non-trusted, Mobile Edge Nodes
    2024 DOI / ARKIV
  • Michael Alexander, Vajira, Thu, Steven Alexander, Vibeke, Svein Arne et al.:
    ScopeSense: An 8.5-Month Sport, Nutrition, and Lifestyle Lifelogging Dataset
    Lecture Notes in Computer Science (LNCS) 2023 DOI / ARKIV
  • Andreas, Susann Dahl, Dag :
    Quantifying athlete wellness: Investigating the predictive potential of subjective wellness reports through a player monitoring system
    Proceedings of the Institution of Mechanical Engineers. Part P, Journal of sports engineering and technology 2023 DOI / ARKIV
  • Tor-Arne Schmidt, Michael, Håvard Johansen, Dag :
    Arctic HARE: A Machine Learning-Based System for Performance Analysis of Cross-Country Skiers
    2023 DOI / ARKIV
  • Michael Alexander, Vajira, Ayan, Thu, Steven, Vibeke et al.:
    ScopeSense: An 8.5-Month Sport, Nutrition, and Lifestyle Lifelogging Dataset
    2023 DOI / ARKIV
  • Ivan Andre Matias Do Vale, Andreas Kjæreng, Sigurd, Dag, Svein Arne :
    The influence of age on the match-to-match variability of physical performance in women’s elite football
    Frontiers in Physiology 2023 DOI / ARKIV
  • Bjørn Aslak, Jon Petter, Dag :
    Algorithms that forget: Machine unlearning and the right to erasure
    Computer Law and Security Review 2023 DOI / ARKIV
  • Aakash, Katja Pauline, Dag, Håvard Johansen :
    Capturing Nutrition Data for Sports: Challenges and Ethical Issues
    2023 DOI / ARKIV
  • Tor-Arne Schmidt, Aril Bernhard, Håvard, Pål, Michael Alexander, Dag :
    Fishing Trawler Event Detection: An Important Step Towards Digitization of Sustainable Fishing
    2023 DOI / ARKIV
  • Bjørn Aslak, Elisavet, Dag, Jon Petter :
    The third country problem under the GDPR: Enhancing protection of data transfers with technology
    International Data Privacy Law (IDPL) 2023 DOI / ARKIV
  • Bjørn Aslak, Jon Petter, Dag :
    Sport and Nutrition Digital Analysis: A Legal Assessment
    Lecture Notes in Computer Science (LNCS) 29. marzo 2023 DOI / ARKIV
  • Andreas Kjæreng, Ivan Andre Matias Do Vale, Sigurd, Morten Brendsgaard Randers, Peter, Dag et al.:
    Position specific physical performance and running intensity fluctuations in elite women's football
    Scandinavian Journal of Medicine & Science in Sports 2022 DOI / ARKIV
  • Siarhei, Nourhan, Cise, Matthias, Dag, Michael et al.:
    Exploration of Different Time Series Models for Soccer Athlete Performance Prediction †
    Engineering Proceedings 2022 DOI / ARKIV
  • Andreas, Cise, Malek, Steven, Dag, Tomas et al.:
    Automatic thumbnail selection for soccer videos using machine learning
    2022 DOI / ARKIV
  • Tor-Arne Schmidt, Aril Bernhard, Bjørn Aslak, Steven, Vajira L B, Håvard D. et al.:
    Njord: a fishing trawler dataset
    2022 DOI / ARKIV
  • Tor-Arne Schmidt, Ove, Svein Ove, Birte, Pål, Steven et al.:
    FishAI: Sustainable Commercial Fishing Challenge
    Nordic Machine Intelligence (NMI) 2022 DOI / ARKIV
  • Debesh, Ashish, Håvard D., Dag, Michael Alexander, Pål et al.:
    Video Analytics in Elite Soccer: A Distributed Computing Perspective
    Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop 2022 DOI / ARKIV
  • Ivan Andre Matias Do Vale, Andreas Kjæreng, Dag, Morten Bredsgaard Randers, Sigurd, Svein Arne :
    The variability of physical match demands in elite women's football
    Science and medicine in football 2022 DOI / ARKIV
  • Nikhil Kumar, Debesh, Michael, Håvard D., Dag, Jens et al.:
    FANet: A Feedback Attention Network for Improved Biomedical Image Segmentation
    IEEE Transactions on Neural Networks and Learning Systems 2022 DOI / ARKIV
  • Mohsin, Håvard, Dag :
    Software Benchmarking of NIST Lightweight Hash Function Finalists on Resource-Constrained AVR Platform via ChipWhisperer
    2025 DOI
  • Pegah, Dag :
    Visual Realism in AI-Driven Virtual Training Environments for Child Investigative Interviews
    UiT Norges arktiske universitet 01. octubre 2025
  • Areeg Samir Ahmed, Håvard Johansen, Dag :
    QMConn: A Self-Healing Controller for Microservices Using Q-Learning and Markov Decision Processes
    2024
  • Aakash, Katja Pauline, Dag, Håvard :
    Capturing Nutrition Data for Sports: Challenges and Ethical Issues
    2023 ARKIV
  • Aril Bernhard, Tor-Arne Schmidt, Dag :
    Compliant multimedia storage and data extraction from the untrusted and privacy-sensitive edge
    2023
  • Dag, Håvard D., Michael :
    Muligheter og skranker for bruk av teknologi og kunstig intelligens ved forebygging av fiskerikriminalitet
    2022
  • Bjørn Aslak, Elisavet, Jon Petter, Dag :
    The Third Country Problem under the GDPR: Technology to the Rescue
    2022
  • Håvard D., Dag, Bjørn Aslak, Tor-Arne Schmidt, Aril Bernhard, Pål et al.:
    Sustainable commercial fishing: Digital inspectors to the rescue
    2022
  • Michael Alexander, Dag, Bjørn Aslak, Tor-Arne Schmidt, Aril Bernhard, Pål et al.:
    Njord: An out-in-the-wild real world fish vessel catch analysis dataset
    2022
  • Dag, Bjørn Aslak, Tor-Arne Schmidt, Aril Bernhard, Pål, Håvard D. et al.:
    Sustainable commercial fishing: Digital inspectors to the rescue
    Arctic Frontiers : Abstracts 2022
  • Michael Alexander, Dag, Bjørn Aslak, Tor-Arne Schmidt, Aril Bernhard, Pål et al.:
    Njord: An out-in-the-wild real world fish vessel catch analysis dataset
    Arctic Frontiers : Abstracts 2022
  • Tor-Arne Schmidt, Aril Bernhard, Bjørn Aslak, Steven A., Vajira, Håvard D. et al.:
    Njord: A Fishing Trawler Dataset
    2022

  • The 50 latest publications is shown on this page. See all publications in Cristin here →


    Research interests

    Johansen leder det tverrfaglige Corpore Sano senteret som driver grunnforskning i spenningsfeltet mellom grunnleggende informatikk, idrettsvitenskap, medisin, helseteknologi og ernæringsvitenskap. Han er spesielt interessert i grunnleggende programvareløsninger som muliggjør sikker og feilfri databehandling i heterogene distribuerte systemer som inkluderer fra lette "Internet of Things" enheter og mobiltelefoner, til bakenforliggende stor-skala skyløsninger.





    Realfagbygget A251


    Click for bigger map