Robert Jenssen
Job description
Jeg er direktør for Visual Intelligence. Dette er et Senter for Forskningsdrevet Innovasjon (SFI) innen kunstig intelligens finansiert for 8 år av Norges forskningsråd og et konsortium av private og offentlige partnere (prosjektnr. 309439). Vi er i den internasjonale frontlinjen innen forskning på dyp læring for bildeanalyse spesielt og multimodal læring generelt.
Min hovedstilling er som Professor i Forskningsgruppa for maskinlæring ved UiT.
Jeg er også ansatt som Adjunct Professor ved: Pioneer Centre for AI, University of Copenhagen & Norwegian Computing Center.
For en kort CV, se "Vedlegg".
Fremme vår felles framtid gjennom forskning
Min motivasjon er å bidra til løsninger for de store samfunnsutfordringene i vår tid innen helse, marin kartegging, bedre utnyttelse av energiressurser og presis observasjon av jorda. Jeg har omfattende samarbeid med industri og offentlige aktører. Min metodologiske forskning har fokusert på emner som nevrale nettverk, informasjonsteoretisk læring, "kjernemetoder", ikke-styrt læring, selv-læring og forklarbar AI (XAI). Min forskning publiseres jevnlig innen de mest sentrale konferanser og journaler innen feltet (ICLR, ICML, NeurIPS, etc). Jeg har vært heldig å jobbe med mange dyktige kolleger, og sammen har vår forskning blitt anerkjent i feltet:
Priser for forskning (og undervisning)
- Beste artikkel, Pattern Recognition Letters (2024)
- Dissertation Award, Norwegian Artificial Intelligence Society (Trosten, biveileder, 2023)
- Beste artikkel, Colour and Visual Computing Symposium (2022)
- Beste artikkel Int’l Medical Informatics Association (2018)
- Undervisningsprisen, Fakultet for naturvitenskap og teknologi, UiT (2018)
- Beste studentartikkel, Scandinavian Conference on Image Analysis (veileder) (2017)
- Vinner av IEEE GRS Society Letters Prize Paper Award (2013)
- Framhevet artikkel, IEEE Transactions on Pattern Analysis and Machine Intelligence (2010)
- Pris for Yngre Forsker Universitetet i Tromsø (deles ut annethvert år) (2007)
- Vinner av ICASSP Outstanding Student Paper Award (2005)
- Beste artikkel, Pattern Recognition Journal, Honourable Mention (2003)
Internasjonalt lederskap (nåværende)
- Vitenskapelig rådgivningsstyre (Scientific Advisory Board - SAB) for Max Planck Institute for Intelligent Systems https://is.mpg.de
- I SAB for et av Frankrikes nye "AI Excellence Clusters" SequoIA, finansiert av France 2030 og under administrasjon fra French National Agency for Research (ANR)
- I SAB for DIREC - Digital Research Centre Denmark https://direc.dk
Utvalgte artikler (Engelsk):
Aggregation of Dependent Expert Distributions in Multimodal Variational Autoencoders. ICML 2025. https://openreview.net/forum?id=jYmGi1175R
The Conditional Cauchy-Schwarz Divergence with Applications to Time-Series Data and Sequential Decision Making. IEEE TPAMI 2025.
REPEAT: Improving Uncertainty Estimation in Representation Learning Explainability. AAAI 2025. https://arxiv.org/abs/2412.08513
Editor for Special Issue on Information Theoretic Methods for the Generalization, Robustness, and Interpretability of Machine Learning. IEEE TNNLS 2025. https://doi.org/10.1109/TNNLS.2025.3525991
Finding NEM-U: Explaining unsupervised representation learning through neural network generated explanation masks. ICML 2024. https://proceedings.mlr.press/v235/moller24a.html
MAP IT to visualize representations. ICLR 2024. https://openreview.net/pdf?id=OKf6JtXtoy
Cauchy-Schwarz divergence information bottleneck for regression. ICLR, 2024. https://openreview.net/pdf?id=7wY67ZDQTE
ADNet++: A few-shot learning framework for multi-class medical image volume segmentation with uncertainty-guided feature refinement. Medical Image Analysis, 2023. https://doi.org/10.1016/j.media.2023.102870
Hubs and Hyperspheres: Reducing Hubness and Improving Transductive Few-Shot Learning With Hyperspherical Embeddings. CVPR, 2023. https://openaccess.thecvf.com/content/CVPR2023/html/Trosten_Hubs_and_Hyperspheres_Reducing_Hubness_and_Improving_Transductive_Few-Shot_Learning_CVPR_2023_paper.html
On the Effects of Self-Supervision and Contrastive Alignment in Deep Multi-View Clustering. CVPR, 2023. https://openaccess.thecvf.com/content/CVPR2023/html/Trosten_On_the_Effects_of_Self-Supervision_and_Contrastive_Alignment_in_Deep_CVPR_2023_paper.html
RELAX: Representation Learning Explainability. International Journal of Computer Vision, 2023. https://doi.org/10.1007/s11263-023-01773-2
ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model. NeurIPS, 2022. https://openreview.net/forum?id=L8pZq2eRWvX
Principle of Relevant Information for Graph Sparsification. UAI, 2022. https://proceedings.mlr.press/v180/yu22c.html
Anomaly Detection-inspired Few-shot Medical Image Segmentation through Self-supervision with Supervoxels. Medical Image Analysis, 2022. https://doi.org/10.1016/j.media.2022.102385
Clinically Relevant Features for Predicting the Severity of Surgical Site Infections. IEEE Journal of Biomedical and Health Informatics, 2021. https://doi.org/10.1109/JBHI.2021.3121038
Measuring Dependence with Matrix-based Entropy Functional. AAAI, 2021. https://doi.org/10.1609/aaai.v35i12.17288
Reconsidering Representation Alignment for Multi-view Clustering. CVPR, 2021. https://openaccess.thecvf.com/content/CVPR2021/papers/Trosten_Reconsidering_Representation_Alignment_for_Multi-View_Clustering_CVPR_2021_paper.pdf
Joint Optimization of an Autoencoder for Clustering and Embedding. Machine Learning, 2021. https://doi.org/10.1007/s10994-021-06015-5
Uncertainty-aware Deep Ensembles for Reliable and Explainable Predictions of Clinical Time Series. IEEE Journal of Biomedical and Health Informatics, 2020. https://doi.org/10.1109/JBHI.2020.3042637
SEN: A Novel Feature Normalization Dissimilarity Measure for Prototypical Few-Shot Learning Networks. ECCV, 2020. https://link.springer.com/chapter/10.1007/978-3-030-58592-1_8
The 50 latest publications is shown on this page. See all publications in Cristin here →
Teaching
Jeg har undervist i mange fag innen maskinlæring og relaterte fag. Jeg gir ofte presentasjoner på fagmesser og for det generelle publikum. Noen eksempler: